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General algorithm of Chemical Reaction Engineering

• Mole balance• Mole balance
• Rate laws• Rate laws
• Stoichiometry• Stoichiometry
• Energy balance• Energy balance

• Combine and Solve• Combine and Solve

• Most of the reactions are not carried out isothermally. 
• Heat generation/ or adsorption can contribute to the 

temperature of the reaction mixture and e.g. affect the reaction 
rate



Why we need energy balance?
Let’s consider an exothermic reaction in a flow reactor: A B→
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• Now we need to provide relationship between X and T to solve 

the equation – the Energy Balance: 



Lecture plan:

• Develop general energy balance equation
• Derive energy balance equation for adiabatic 

operation
• Derive energy balance for operation with 

thermal exchange
– constant temperature
– co-current flow of heat transfer fluid
– counter-current flow of heat transfer fluid



The Energy balance

• According to the 1st Law of Thermodynamics,
for closed system

dE Q Wδ δ= −

• For an open system we need to take into 
account mass and energy flow through the 
system...



The mass and energy balance 

• For an open system:
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The Energy Balance

• The work term W can be separated into flow work (work 
necessary to get the mass in and out of the system) and shaft 
work (stirrer, turbine etc.) 
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• now we insert this into energy equation and re-group
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The Energy Balance

• neglecting potential and kinetic energy:

( ) ( )
1 1

sys
s i i mi i i mi

i iin out

dE
Q W F E PV F E PV

dt = =

= − + ⋅ + − ⋅ +∑ ∑& &

• now we insert this into energy equation and re-group
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• now we need to find how to deal with enthalpies…



Steady-State operation: 
the energy balance and Conversion

• Flow Out

b c dA B C D
a a a

+ → +

• Flow In: 0, 0, 0, 0,A B C DF F F F
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The Enthalpies
• What is the enthalpy of the system at a given temperature?
• The enthalpy at a given temperature will equal to the enthalpy 

of formation + eventual the enthalpy of eventual phase 
transformation + enthalpy of heating
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The Enthalpies

• If no phase transformation occurs in the reactor
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• Heat capacity dependence on the temperature is usually 
expressed
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• In the most of cases we can assume heat capacity constant



The Enthalpies

• where
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• in most systems the shaft work can be neglected. 
• for an adiabatic system we can derive an explicit equation:
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• Now it can be solved together 
with the mole balance equation



Solving for adiabatic tubular reactor

• Mole balance
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• when pure A enters and ∆CP=0.
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Example 8-3: Butane isomerization

• Reaction carried out adiabatically in the liquid 
phase using trace amounts of liquid catalyst.
– reaction rate 31.1h-1 at 360K
– feed enters at 330K
–

– Calculate the PFR and CSTR volumes required for 
163 kmol/h production at 70% conversion of a 
mixture 90 mol% n-butane and 10% inert
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Steady state tubular reactor with heat exchange

• If the heat is added or removed through the walls
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Steady state tubular reactor with heat exchange

• Combining and taking the limit:
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Balance on the coolant heat transfer
• Co-current flow

• Counter current flow
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Problems (for the class)

• P8.7: (a)-(d)


